后端技术杂谈4:Elasticsearch与solr入门实践

阮一峰:全文搜索引擎 Elasticsearch 入门教程

阅读 1093

收藏 76

2017-08-23

原文链接:www.ruanyifeng.com

9月7日-8日 北京,与 Google Twitch 等团队技术大咖面对面www.bagevent.com

全文搜索属于最常见的需求,开源的 Elasticsearch (以下简称 Elastic)是目前全文搜索引擎的首选。

它可以快速地储存、搜索和分析海量数据。维基百科、Stack Overflow、Github 都采用它。

Elastic 的底层是开源库 Lucene。但是,你没法直接用 Lucene,必须自己写代码去调用它的接口。Elastic 是 Lucene 的封装,提供了 REST API 的操作接口,开箱即用。

本文从零开始,讲解如何使用 Elastic 搭建自己的全文搜索引擎。每一步都有详细的说明,大家跟着做就能学会。

一、安装

Elastic 需要 Java 8 环境。如果你的机器还没安装 Java,可以参考这篇文章,注意要保证环境变量JAVA_HOME正确设置。

安装完 Java,就可以跟着官方文档安装 Elastic。直接下载压缩包比较简单。

1
2
>  $ wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5.5.1.zip$ unzip elasticsearch-5.5.1.zip$ cd elasticsearch-5.5.1/ 
>

接着,进入解压后的目录,运行下面的命令,启动 Elastic。

1
2
>  $ ./bin/elasticsearch
>

如果这时报错“max virtual memory areas vm.max_map_count [65530] is too low”,要运行下面的命令。

1
2
>  $ sudo sysctl -w vm.max_map_count=262144
>

如果一切正常,Elastic 就会在默认的9200端口运行。这时,打开另一个命令行窗口,请求该端口,会得到说明信息。

1
2
>  $ curl localhost:9200 {  "name" : "atntrTf",  "cluster_name" : "elasticsearch",  "cluster_uuid" : "tf9250XhQ6ee4h7YI11anA",  "version" : {    "number" : "5.5.1",    "build_hash" : "19c13d0",    "build_date" : "2017-07-18T20:44:24.823Z",    "build_snapshot" : false,    "lucene_version" : "6.6.0"  },  "tagline" : "You Know, for Search"}
>

上面代码中,请求9200端口,Elastic 返回一个 JSON 对象,包含当前节点、集群、版本等信息。

按下 Ctrl + C,Elastic 就会停止运行。

默认情况下,Elastic 只允许本机访问,如果需要远程访问,可以修改 Elastic 安装目录的config/elasticsearch.yml文件,去掉network.host的注释,将它的值改成0.0.0.0,然后重新启动 Elastic。

1
2
>  network.host: 0.0.0.0
>

上面代码中,设成0.0.0.0让任何人都可以访问。线上服务不要这样设置,要设成具体的 IP。

二、基本概念

2.1 Node 与 Cluster

Elastic 本质上是一个分布式数据库,允许多台服务器协同工作,每台服务器可以运行多个 Elastic 实例。

单个 Elastic 实例称为一个节点(node)。一组节点构成一个集群(cluster)。

2.2 Index

Elastic 会索引所有字段,经过处理后写入一个反向索引(Inverted Index)。查找数据的时候,直接查找该索引。

所以,Elastic 数据管理的顶层单位就叫做 Index(索引)。它是单个数据库的同义词。每个 Index (即数据库)的名字必须是小写。

下面的命令可以查看当前节点的所有 Index。

1
2
>  $ curl -X GET 'http://localhost:9200/_cat/indices?v'
>

2.3 Document

Index 里面单条的记录称为 Document(文档)。许多条 Document 构成了一个 Index。

Document 使用 JSON 格式表示,下面是一个例子。

1
2
>  {  "user": "张三",  "title": "工程师",  "desc": "数据库管理"}
>

同一个 Index 里面的 Document,不要求有相同的结构(scheme),但是最好保持相同,这样有利于提高搜索效率。

2.4 Type

Document 可以分组,比如weather这个 Index 里面,可以按城市分组(北京和上海),也可以按气候分组(晴天和雨天)。这种分组就叫做 Type,它是虚拟的逻辑分组,用来过滤 Document。

不同的 Type 应该有相似的结构(schema),举例来说,id字段不能在这个组是字符串,在另一个组是数值。这是与关系型数据库的表的一个区别。性质完全不同的数据(比如productslogs)应该存成两个 Index,而不是一个 Index 里面的两个 Type(虽然可以做到)。

下面的命令可以列出每个 Index 所包含的 Type。

1
2
>  $ curl 'localhost:9200/_mapping?pretty=true'
>

根据规划,Elastic 6.x 版只允许每个 Index 包含一个 Type,7.x 版将会彻底移除 Type。

三、新建和删除 Index

新建 Index,可以直接向 Elastic 服务器发出 PUT 请求。下面的例子是新建一个名叫weather的 Index。

1
2
>  $ curl -X PUT 'localhost:9200/weather'
>

服务器返回一个 JSON 对象,里面的acknowledged字段表示操作成功。

1
2
>  {  "acknowledged":true,  "shards_acknowledged":true}
>

然后,我们发出 DELETE 请求,删除这个 Index。

1
2
>  $ curl -X DELETE 'localhost:9200/weather'
>

四、中文分词设置

首先,安装中文分词插件。这里使用的是 ik,也可以考虑其他插件(比如 smartcn)。

1
2
>  $ ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v5.5.1/elasticsearch-analysis-ik-5.5.1.zip
>

上面代码安装的是5.5.1版的插件,与 Elastic 5.5.1 配合使用。

接着,重新启动 Elastic,就会自动加载这个新安装的插件。

然后,新建一个 Index,指定需要分词的字段。这一步根据数据结构而异,下面的命令只针对本文。基本上,凡是需要搜索的中文字段,都要单独设置一下。

1
2
>  $ curl -X PUT 'localhost:9200/accounts' -d '{  "mappings": {    "person": {      "properties": {        "user": {          "type": "text",          "analyzer": "ik_max_word",          "search_analyzer": "ik_max_word"        },        "title": {          "type": "text",          "analyzer": "ik_max_word",          "search_analyzer": "ik_max_word"        },        "desc": {          "type": "text",          "analyzer": "ik_max_word",          "search_analyzer": "ik_max_word"        }      }    }  }}'
>

上面代码中,首先新建一个名称为accounts的 Index,里面有一个名称为person的 Type。person有三个字段。

  • user
  • title
  • desc

这三个字段都是中文,而且类型都是文本(text),所以需要指定中文分词器,不能使用默认的英文分词器。

Elastic 的分词器称为 analyzer。我们对每个字段指定分词器。

1
2
>  "user": {  "type": "text",  "analyzer": "ik_max_word",  "search_analyzer": "ik_max_word"}
>

上面代码中,analyzer是字段文本的分词器,search_analyzer是搜索词的分词器。ik_max_word分词器是插件ik提供的,可以对文本进行最大数量的分词。

五、数据操作

5.1 新增记录

向指定的 /Index/Type 发送 PUT 请求,就可以在 Index 里面新增一条记录。比如,向/accounts/person发送请求,就可以新增一条人员记录。

1
2
>  $ curl -X PUT 'localhost:9200/accounts/person/1' -d '{  "user": "张三",  "title": "工程师",  "desc": "数据库管理"}' 
>

服务器返回的 JSON 对象,会给出 Index、Type、Id、Version 等信息。

1
2
>  {  "_index":"accounts",  "_type":"person",  "_id":"1",  "_version":1,  "result":"created",  "_shards":{"total":2,"successful":1,"failed":0},  "created":true}
>

如果你仔细看,会发现请求路径是/accounts/person/1,最后的1是该条记录的 Id。它不一定是数字,任意字符串(比如abc)都可以。

新增记录的时候,也可以不指定 Id,这时要改成 POST 请求。

1
2
>  $ curl -X POST 'localhost:9200/accounts/person' -d '{  "user": "李四",  "title": "工程师",  "desc": "系统管理"}'
>

上面代码中,向/accounts/person发出一个 POST 请求,添加一个记录。这时,服务器返回的 JSON 对象里面,_id字段就是一个随机字符串。

1
2
>  {  "_index":"accounts",  "_type":"person",  "_id":"AV3qGfrC6jMbsbXb6k1p",  "_version":1,  "result":"created",  "_shards":{"total":2,"successful":1,"failed":0},  "created":true}
>

注意,如果没有先创建 Index(这个例子是accounts),直接执行上面的命令,Elastic 也不会报错,而是直接生成指定的 Index。所以,打字的时候要小心,不要写错 Index 的名称。

5.2 查看记录

/Index/Type/Id发出 GET 请求,就可以查看这条记录。

1
2
>  $ curl 'localhost:9200/accounts/person/1?pretty=true'
>

上面代码请求查看/accounts/person/1这条记录,URL 的参数pretty=true表示以易读的格式返回。

返回的数据中,found字段表示查询成功,_source字段返回原始记录。

1
2
>  {  "_index" : "accounts",  "_type" : "person",  "_id" : "1",  "_version" : 1,  "found" : true,  "_source" : {    "user" : "张三",    "title" : "工程师",    "desc" : "数据库管理"  }}
>

如果 Id 不正确,就查不到数据,found字段就是false

1
2
>  $ curl 'localhost:9200/weather/beijing/abc?pretty=true' {  "_index" : "accounts",  "_type" : "person",  "_id" : "abc",  "found" : false}
>

5.3 删除记录

删除记录就是发出 DELETE 请求。

1
2
>  $ curl -X DELETE 'localhost:9200/accounts/person/1'
>

这里先不要删除这条记录,后面还要用到。

5.4 更新记录

更新记录就是使用 PUT 请求,重新发送一次数据。

1
2
>  $ curl -X PUT 'localhost:9200/accounts/person/1' -d '{    "user" : "张三",    "title" : "工程师",    "desc" : "数据库管理,软件开发"}'  {  "_index":"accounts",  "_type":"person",  "_id":"1",  "_version":2,  "result":"updated",  "_shards":{"total":2,"successful":1,"failed":0},  "created":false}
>

上面代码中,我们将原始数据从”数据库管理”改成”数据库管理,软件开发”。 返回结果里面,有几个字段发生了变化。

1
2
>  "_version" : 2,"result" : "updated","created" : false
>

可以看到,记录的 Id 没变,但是版本(version)从1变成2,操作类型(result)从created变成updatedcreated字段变成false,因为这次不是新建记录。

六、数据查询

6.1 返回所有记录

使用 GET 方法,直接请求/Index/Type/_search,就会返回所有记录。

1
2
>  $ curl 'localhost:9200/accounts/person/_search' {  "took":2,  "timed_out":false,  "_shards":{"total":5,"successful":5,"failed":0},  "hits":{    "total":2,    "max_score":1.0,    "hits":[      {        "_index":"accounts",        "_type":"person",        "_id":"AV3qGfrC6jMbsbXb6k1p",        "_score":1.0,        "_source": {          "user": "李四",          "title": "工程师",          "desc": "系统管理"        }      },      {        "_index":"accounts",        "_type":"person",        "_id":"1",        "_score":1.0,        "_source": {          "user" : "张三",          "title" : "工程师",          "desc" : "数据库管理,软件开发"        }      }    ]  }}
>

上面代码中,返回结果的 took字段表示该操作的耗时(单位为毫秒),timed_out字段表示是否超时,hits字段表示命中的记录,里面子字段的含义如下。

  • total:返回记录数,本例是2条。
  • max_score:最高的匹配程度,本例是1.0
  • hits:返回的记录组成的数组。

返回的记录中,每条记录都有一个_score字段,表示匹配的程序,默认是按照这个字段降序排列。

6.2 全文搜索

Elastic 的查询非常特别,使用自己的查询语法,要求 GET 请求带有数据体。

1
2
>  $ curl 'localhost:9200/accounts/person/_search'  -d '{  "query" : { "match" : { "desc" : "软件" }}}'
>

上面代码使用 Match 查询,指定的匹配条件是desc字段里面包含”软件”这个词。返回结果如下。

1
2
>  {  "took":3,  "timed_out":false,  "_shards":{"total":5,"successful":5,"failed":0},  "hits":{    "total":1,    "max_score":0.28582606,    "hits":[      {        "_index":"accounts",        "_type":"person",        "_id":"1",        "_score":0.28582606,        "_source": {          "user" : "张三",          "title" : "工程师",          "desc" : "数据库管理,软件开发"        }      }    ]  }}
>

Elastic 默认一次返回10条结果,可以通过size字段改变这个设置。

1
2
>  $ curl 'localhost:9200/accounts/person/_search'  -d '{  "query" : { "match" : { "desc" : "管理" }},  "size": 1}'
>

上面代码指定,每次只返回一条结果。

还可以通过from字段,指定位移。

1
2
>  $ curl 'localhost:9200/accounts/person/_search'  -d '{  "query" : { "match" : { "desc" : "管理" }},  "from": 1,  "size": 1}'
>

上面代码指定,从位置1开始(默认是从位置0开始),只返回一条结果。

6.3 逻辑运算

如果有多个搜索关键字, Elastic 认为它们是or关系。

1
2
>  $ curl 'localhost:9200/accounts/person/_search'  -d '{  "query" : { "match" : { "desc" : "软件 系统" }}}'
>

上面代码搜索的是软件 or 系统

如果要执行多个关键词的and搜索,必须使用布尔查询

1
2
>  $ curl 'localhost:9200/accounts/person/_search'  -d '{  "query": {    "bool": {      "must": [        { "match": { "desc": "软件" } },        { "match": { "desc": "系统" } }      ]    }  }}'
>

七、参考链接

(完)

一、前言

在开发网站/App项目的时候,通常需要搭建搜索服务。比如,新闻类应用需要检索标题/内容,社区类应用需要检索用户/帖子。

对于简单的需求,可以使用数据库的 LIKE 模糊搜索,示例:

SELECT * FROM news WHERE title LIKE ‘%法拉利跑车%’

可以查询到所有标题含有 “法拉利跑车” 关键词的新闻,但是这种方式有明显的弊端:

1、模糊查询性能极低,当数据量庞大的时候,往往会使数据库服务中断;

2、无法查询相关的数据,只能严格在标题中匹配关键词。

因此,需要搭建专门提供搜索功能的服务,具备分词、全文检索等高级功能。 Solr 就是这样一款搜索引擎,可以让你快速搭建适用于自己业务的搜索服务。

二、安装

到官网 http://lucene.apache.org/solr/ 下载安装包,解压并进入 Solr 目录:

wget ‘http://apache.website-solution.net/lucene/solr/6.2.0/solr-6.2.0.tgz'

tar xvf solr-6.2.0.tgz

cd solr-6.2.0

目录结构如下:

Solr 6.2 目录结构

启动 Solr 服务之前,确认已经安装 Java 1.8 :

查看 Java 版本

启动 Solr 服务:

./bin/solr start -m 1g

Solr 将默认监听 8983 端口,其中 -m 1g 指定分配给 JVM 的内存为 1 G。

在浏览器中访问 Solr 管理后台:

http://127.0.0.1:8983/solr/#/

Solr 管理后台

创建 Solr 应用:

./bin/solr create -c my_news

可以在 solr-6.2.0/server/solr 目录下生成 my_news 文件夹,结构如下:

my_news 目录结构

同时,可以在管理后台看到 my_news:

管理后台

三、创建索引

我们将从 MySQL 数据库中导入数据到 Solr 并建立索引。

首先,需要了解 Solr 中的两个概念: 字段(field) 和 字段类型(fieldType),配置示例如下:

schema.xml 示例

field 指定一个字段的名称、是否索引/存储和字段类型。

fieldType 指定一个字段类型的名称以及在查询/索引的时候可能用到的分词插件。

将 solr-6.2.0\server\solr\my_news\conf 目录下默认的配置文件 managed-schema 重命名为 schema.xml 并加入新的 fieldType:

分词类型

在 my_news 目录下创建 lib 目录,将用到的分词插件 ik-analyzer-solr5-5.x.jar 加到 lib 目录,结构如下:

my_news 目录结构

在 Solr 安装目录下重启服务:

./bin/solr restart

可以在管理后台看到新加的类型:

text_ik 类型

接下来创建和我们数据库字段对应的 field:title 和 content,类型选为 text_ik:

新建字段 title

将要导入数据的 MySQL 数据库表结构:

编辑 conf/solrconfig.xml 文件,加入类库和数据库配置:

类库

dataimport config

同时新建数据库连接配置文件 conf/db-mysql-config.xml ,内容如下:

数据库配置文件

将数据库连接组件 mysql-connector-java-5.1.39-bin.jar 放到 lib 目录下,重启 Solr,访问管理后台,执行全量导入数据:

全量导入数据

创建定时更新脚本:

定时更新脚本

加入到定时任务,每5分钟增量更新一次索引:

定时任务

在 Solr 管理后台测试搜索结果:

分词搜索结果

至此,基本的搜索引擎搭建完毕,外部应用只需通过 http 协议提供查询参数,就可以获取搜索结果。

四、搜索干预

通常需要对搜索结果进行人工干预,比如编辑推荐、竞价排名或者屏蔽搜索结果。Solr 已经内置了 QueryElevationComponent 插件,可以从配置文件中获取搜索关键词对应的干预列表,并将干预结果排在搜索结果的前面。

在 solrconfig.xml 文件中,可以看到:

干预其请求配置

定义了搜索组件 elevator,应用在 /elevate 的搜索请求中,干预结果的配置文件在 solrconfig.xml 同目录下的 elevate.xml 中,干预配置示例:

重启 Solr ,当搜索 “关键词” 的时候,id 为 1和 4 的文档将出现在前面,同时 id = 3 的文档被排除在结果之外,可以看到,没有干预的时候,搜索结果为:

无干预结果

当有搜索干预的时候:

干预结果

通过配置文件干预搜索结果,虽然简单,但是每次更新都要重启 Solr 才能生效,稍显麻烦,我们可以仿照 QueryElevationComponent 类,开发自己的干预组件,例如:从 Redis 中读取干预配置。

五、中文分词

中文的搜索质量,和分词的效果息息相关,可以在 Solr 管理后台测试分词:

分词结果测试

上例可以看到,使用 IKAnalyzer 分词插件,对 “北京科技大学” 分词的测试结果。当用户搜索 “北京”、“科技大学”、“科技大”、“科技”、“大学” 这些关键词的时候,都会搜索到文本内容含 “北京科技大学” 的文档。

常用的中文分词插件有 IKAnalyzer、mmseg4j和 Solr 自带的 smartcn 等,分词效果各有优劣,具体选择哪个,可以根据自己的业务场景,分别测试效果再选择。

分词插件一般都有自己的默认词库和扩展词库,默认词库包含了绝大多数常用的中文词语。如果默认词库无法满足你的需求,比如某些专业领域的词汇,可以在扩展词库中手动添加,这样分词插件就能识别新词语了。

分词插件扩展词库配置示例

分词插件还可以指定停止词库,将某些无意义的词汇剔出分词结果,比如:“的”、“哼” 等,例如:

去除无意义的词

六、总结

以上介绍了 Solr 最常用的一些功能,Solr 本身还有很多其他丰富的功能,比如分布式部署。

希望对你有所帮助。

七、附录

1、参考资料:

https://wiki.apache.org/solr/

http://lucene.apache.org/solr/quickstart.html

https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide

2、上述 Demo 中用到的所有配置文件、Jar 包:

https://github.com/Ceelog/OpenSchool/blob/master/my_news.zip

3、还有疑问?联系作者微博/微信 @Ceelog

微信公众号

个人公众号:程序员黄小斜

微信公众号【程序员黄小斜】新生代青年聚集地,程序员成长充电站。作者黄小斜,职业是阿里程序员,身份是斜杠青年,希望和更多的程序员交朋友,一起进步和成长!这一次,我们一起出发。

关注公众号后回复“2019”领取我这两年整理的学习资料,涵盖自学编程、求职面试、算法刷题、Java技术、计算机基础和考研等8000G资料合集。

技术公众号:Java技术江湖

微信公众号【Java技术江湖】一位阿里 Java 工程师的技术小站,专注于 Java 相关技术:SSM、SpringBoot、MySQL、分布式、中间件、集群、Linux、网络、多线程,偶尔讲点Docker、ELK,同时也分享技术干货和学习经验,致力于Java全栈开发!

关注公众号后回复“PDF”即可领取200+页的《Java工程师面试指南》强烈推荐,几乎涵盖所有Java工程师必知必会的知识点。

坚持原创技术分享,您的支持将鼓励我继续创作!